8 research outputs found

    From Intrusion Detection to Attacker Attribution: A Comprehensive Survey of Unsupervised Methods

    Get PDF
    Over the last five years there has been an increase in the frequency and diversity of network attacks. This holds true, as more and more organisations admit compromises on a daily basis. Many misuse and anomaly based Intrusion Detection Systems (IDSs) that rely on either signatures, supervised or statistical methods have been proposed in the literature, but their trustworthiness is debatable. Moreover, as this work uncovers, the current IDSs are based on obsolete attack classes that do not reflect the current attack trends. For these reasons, this paper provides a comprehensive overview of unsupervised and hybrid methods for intrusion detection, discussing their potential in the domain. We also present and highlight the importance of feature engineering techniques that have been proposed for intrusion detection. Furthermore, we discuss that current IDSs should evolve from simple detection to correlation and attribution. We descant how IDS data could be used to reconstruct and correlate attacks to identify attackers, with the use of advanced data analytics techniques. Finally, we argue how the present IDS attack classes can be extended to match the modern attacks and propose three new classes regarding the outgoing network communicatio

    Exploring the protection of private browsing in desktop browsers

    Get PDF
    Desktop browsers have introduced private browsing mode, a security control which aims to protect users’ data that are generated during a private browsing session, by not storing them in the file system. As the Internet becomes ubiquitous, the existence of this security control is beneficial to users,since privacy violations are increasing, while users tend to be more concerned about their privacy when browsing the web in a post-Snowden era. In this context, this work examines the protection that is offered by the private browsing mode of the most popular desktop browsers in Windows (i.e.,Chrome, Firefox, IE and Opera).Our experiments uncover occasions in which even if users browse the web with a private session,privacy violations exist contrary to what is documented by the browser.To raise the bar of privacy protection that is offered by web browsers,we propose the use of a virtual filesystem as the storage medium of browsers’ cache data. We demonstrate with a case study how this countermeasure protects users from the privacy violations, which are previously identified in this work

    You can run but you cannot hide from memory: Extracting IM evidence of Android apps

    Get PDF
    Smartphones have become a vital part of our business and everyday life, as they constitute the primary communication vector. Android dominates the smartphone market (86.2%) and has become pervasive, running in `smart' devices such as tablets, TV, watches, etc. Nowadays, instant messaging applications have become popular amongst smartphone users and since 2016 are the main way of messaging communication. Consequently, their inclusion in any forensics analysis is necessary as they constitute a source of valuable data, which might be used as (admissible) evidence. Often, their examination involves the extraction and analysis of the applications' databases that reside in the device's internal or external memory. The downfall of this method is the fact that databases can be tampered or erased, therefore the evidence might be accidentally or maliciously modified. In this paper, a methodology for retrieving instant messaging data from the volatile memory of Android smartphones is proposed, instead of the traditional database retrieval. The methodology is demonstrated with the use of a case study of four experiments, which provide insights regarding the behavior of such data in memory. Our experimental results show that a large amount of data can be retrieved from the memory, even if the device's battery is removed for a short time. In addition, the retrieved data are not only recent messages, but also messages sent a few months before data acquisition

    TRAWL: Protection against rogue sites for the masses

    Get PDF
    The number of smartphones reached 3.4 billion in the third quarter of 2016 [1]. These devices facilitate our daily lives and have become the primary way of accessing the web. Although all desktop browsers filter rogue websites, their mobile counterparts often do not filter them at all, exposing their users to websites serving malware or hosting phishing attacks. In this paper we revisit the anti-phishing filtering mechanism which is offered in the most popular web browsers of Android, iOS and Windows Phone. Our results show that mobile users are still unprotected against phishing attacks, as most of the browsers are unable to filter phishing URLs. Thus, we implement and evaluate TRAWL (TRAnsparent Web protection for alL), as a cost effective security control that provides DNS and URL filtering using several blacklists

    Game-theoretic decision support for cyber forensic investigations

    Get PDF
    The use of anti-forensic techniques is a very common practice that stealthy adversaries may deploy to minimise their traces and make the investigation of an incident harder by evading detection and attribution. In this paper, we study the interaction between a cyber forensic Investigator and a strategic Attacker using a game-theoretic framework. This is based on a Bayesian game of incomplete information played on a multi-host cyber forensics investigation graph of actions traversed by both players. The edges of the graph represent players’ actions across different hosts in a network. In alignment with the concept of Bayesian games, we define 8 two Attacker types to represent their ability of deploying anti-forensic techniques to conceal their activities. In this way, our model allows the Investigator to identify her optimal investigating 10 policy taking into consideration the cost and impact of the available actions, while coping with the uncertainty of the Attacker’s type and strategic decisions. To evaluate our model, we construct a realistic case study based on threat reports and data extracted from the MITRE ATT&CK STIX repository, Common Vulnerability Scoring System (CVSS), and interviews with cyber-security practitioners. We use the case study to compare the performance of the proposed method against 15 two other investigative methods and three different types of Attackers

    Towards a Multi-Layered Phishing Detection.

    Get PDF
    Phishing is one of the most common threats that users face while browsing the web. In the current threat landscape, a targeted phishing attack (i.e., spear phishing) often constitutes the first action of a threat actor during an intrusion campaign. To tackle this threat, many data-driven approaches have been proposed, which mostly rely on the use of supervised machine learning under a single-layer approach. However, such approaches are resource-demanding and, thus, their deployment in production environments is infeasible. Moreover, most previous works utilise a feature set that can be easily tampered with by adversaries. In this paper, we investigate the use of a multi-layered detection framework in which a potential phishing domain is classified multiple times by models using different feature sets. In our work, an additional classification takes place only when the initial one scores below a predefined confidence level, which is set by the system owner. We demonstrate our approach by implementing a two-layered detection system, which uses supervised machine learning to identify phishing attacks. We evaluate our system with a dataset consisting of active phishing attacks and find that its performance is comparable to the state of the art
    corecore